Rumor Detection of COVID-19 Pandemic on Online Social Networks

Anqi Shi, Zheng Qu, Qingyao Jia, Chen Lyu Shanghai University of Finance and Economics, Shanghai, China presenter: Zheng Qu 2020-10-10

- Motivation
- Data Collection and System Design
- Evaluation and Results
- Conclusion

Motivation

- Data Collection and System Design
- Evaluation and Results
- Conclusion

Motivation

- Social networks have penetrated into all aspects of people's daily lives.
- The new coronavirus epidemic (COVID-19) health crisis across the world.

causes the deep

• Messages about the COVID-19 are now largely emerging on social platforms, including some false information or **rumors**.

Motivation

- Rumors are regarded as some kinds of **public opinion viruses**.
- After being widely spread, rumors can spread panic and pose a potential threat to social stability.
- Therefore, it is an essential task to **detect rumors of the COVID-19** on social networks.

Our Work

- We extract four types of features: **text features**, **user-related features**, **interaction-based features**, and **emotion-based features** to characterize the information related to the COVID-19.
- We design a novel rumor detection model by using an ensemble learning approach for the COVID-19 related messages.
- On the Weibo platform, we perform extensive experiments to validate our model.
 - ✓ The experiment results show that our model has a high detection accuracy for rumor detection.

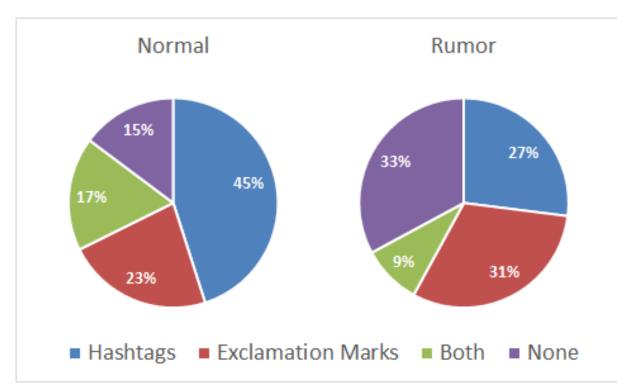
- Motivation
- Data Collection and System Design
- Evaluation and Results
- Conclusion

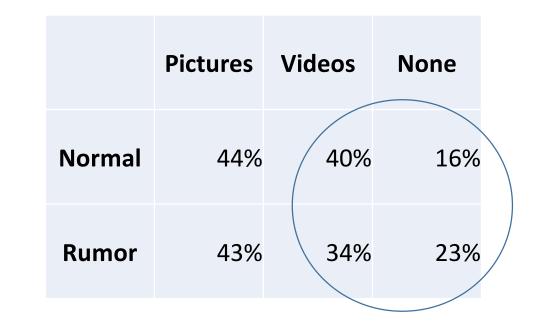
Data Collection

- Based on the real data collected from Weibo:
 - User's personal information:
 - including gender, profile, residence, membership level, microblog authentication, number of following, number of fans, number of Weibo or microblogs, etc.
 - Content information of microblog/Weibo:
 - including publish time, publish channel, blog content, number of reposts, number of comments, number of likes, etc.

System Design

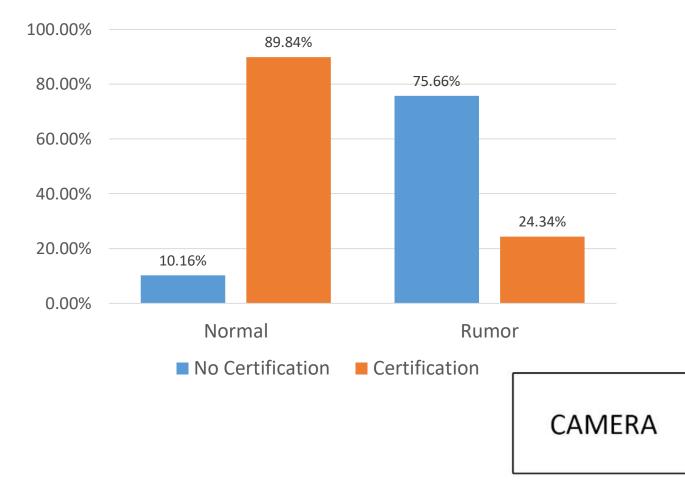
- Construct four types of features:
 - Text features:
 - collected from the content of a microblog or message of COVID-19.
 - User-related features:
 - the basic features of Weibo users.
 - Interaction-based features:
 - reflect the degree of attention during the propagation process.
 - Emotion-based features:
 - reflect the personal emotion of the user and the attitude of the released message.

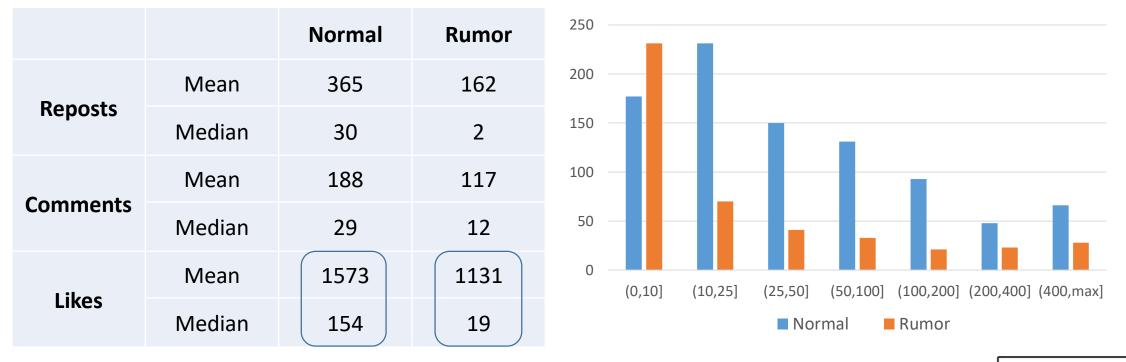



System Design

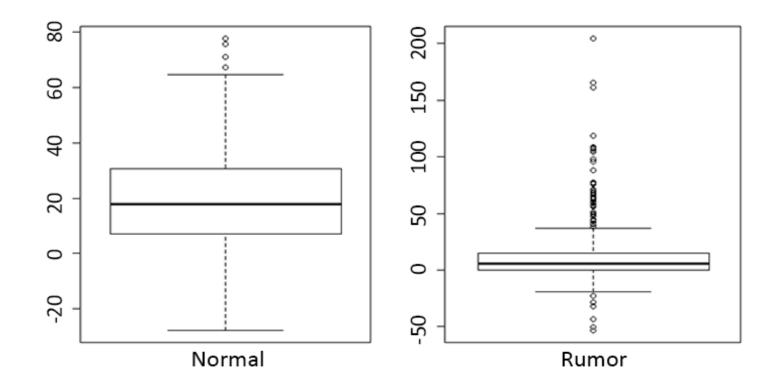
- The XGBoost model:
 - One of the ensemble learning modes
 - Prevent overfitting
 - Deal with missing data effectively
 - Improve the training speed

- Motivation
- Data Collection and System Design
- Evaluation and Results
- Conclusion


• Text features:



• User-related Features:


		Normal Rumor			
Gender	Female	25.89%	30.73%		
	Male	74.11%	69.27%		
Weibo	Mean	23164	14903		
	Median	12477	4412		
Member	0	308	272		
	1	3	0		
	2	31	14		
	3	50	27		
	4	65	32		
	5	98	57		
	6	224	162		
	7	117	77		
Reputation	Mean	0.96	0.77		
	Median	0.99	0.97		
Population -	number of fans				
Reputation =	number of followers + number of fans				

• Interaction-based Features:

• Emotion-based Features:

Performance Metric

• The most common evaluation indicators for classification models are accuracy, precision, recall, F1 value, and AUC value:

Model	Accuracy	Precision	Recall	F1	AUC
Text Characteristics	0.70	0.67	0.54	0.60	0.78
User-related Features	0.87	0.85	0.83	0.84	0.91
Interaction-based Features	0.80	0.94	0.55	0.69	0.84
Emotion-based Features	0.69	0.61	0.64	0.63	0.71
Our Detection Model	0.91	0.94	0.85	0.89	0.96

Feature Importance

- Motivation
- Data Collection and System Design
- Evaluation and Results
- Conclusion

Conclusion

- We design a rumor detection model for COVID-19 related messages on social networks:
 - We deploy the XGBoost ensemble learning algorithm to construct a new rumor detection model;
 - Our model combining 16 features in four dimensions can achieve 91% accuracy.
- We find that the top five features that have the greatest impact on the accuracy of rumor detection are the number of reposts, reputation, emotion, number of likes, and Weibo certification.

Thank You !